Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus.

نویسندگان

  • Marc Chester
  • Pierre Tourneux
  • Greg Seedorf
  • Theresa R Grover
  • Jason Gien
  • Steven H Abman
چکیده

Impaired nitric oxide-cGMP signaling contributes to severe pulmonary hypertension after birth, which may in part be due to decreased soluble guanylate cyclase (sGC) activity. Cinaciguat (BAY 58-2667) is a novel sGC activator that causes vasodilation, even in the presence of oxidized heme or heme-free sGC, but its hemodynamic effects have not been studied in the perinatal lung. We performed surgery on eight fetal (126 +/- 2 days gestation) lambs (full term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. An ultrasonic flow transducer was placed on the left pulmonary artery to measure blood flow, and a catheter was placed in the left pulmonary artery for drug infusion. Cinaciguat (0.1-100 microg over 10 min) caused dose-related increases in pulmonary blood flow greater than fourfold above baseline and reduced pulmonary vascular resistance by 80%. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an sGC-oxidizing inhibitor, enhanced cinaciguat-induced pulmonary vasodilation by >120%. The pulmonary vasodilator effect of cinaciguat was prolonged, decreasing pulmonary vascular resistance for >1.5 h after brief infusion. In vitro stimulation of ovine fetal pulmonary artery smooth muscle cells with cinaciguat after ODQ treatment resulted in a 14-fold increase in cGMP compared with non-ODQ-treated cells. We conclude that cinaciguat causes potent and sustained fetal pulmonary vasodilation that is augmented in the presence of oxidized sGC and speculate that cinaciguat may have therapeutic potential for severe neonatal pulmonary hypertension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of BAY 41-2272, a soluble guanylate cyclase activator, on pulmonary vascular reactivity in the ovine fetus.

Nitric oxide (NO)-cGMP signaling plays a critical role during the transition of the pulmonary circulation at birth. BAY 41-2272 is a novel NO-independent direct stimulator of soluble guanylate cyclase that causes vasodilation in systemic and local circulations. However, the hemodynamic effects of BAY 41-2272 have not been studied in the perinatal pulmonary circulation. We hypothesized that BAY ...

متن کامل

Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension.

Although inhaled NO (iNO) therapy is often effective in treating infants with persistent pulmonary hypertension of the newborn (PPHN), up to 40% of patients fail to respond, which may be partly due to abnormal expression and function of soluble guanylate cyclase (sGC). To determine whether altered sGC expression or activity due to oxidized sGC contributes to high pulmonary vascular resistance (...

متن کامل

Impaired NO-cGMP signaling in the pathogenesis of neonatal pulmonary hypertension and therapeutic implications

Background Postnatal survival is dependent upon successful transition of the pulmonary circulation at birth. Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome that is characterized by the failure to achieve or sustain a marked reduction of pulmonary vascular resistance (PVR) after delivery. High PVR causes extra-pulmonary right-to-left shunt, leading to profound hyp...

متن کامل

Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure.

AIMS Cinaciguat (BAY 58-2667) is a novel soluble guanylate cyclase activator. This study evaluated the haemodynamic effect and safety of cinaciguat added to standard therapy in patients with acute decompensated heart failure (ADHF). METHODS AND RESULTS In this placebo-controlled, phase IIb study (NCT00559650), 139 patients admitted with ADHF, pulmonary capillary wedge pressure (PCWP) ≥18 mmHg...

متن کامل

Pharmacological preconditioning with the guanylate cyclase activator cinaciguat (BAY 58-2667) protects against reperfusion injury after cardiopulmonary bypass

Background Activation of the nitric oxide – soluble guanylate cyclase – cyclic guanosine monophosphate (NO-sGC-cGMP) pathway can induce potent cardioprotection-like effects against ischemia-reperfusion injury. We investigated the effects of pharmacological preconditioning with cinaciguat (BAY 58-2667), a novel sGC-activator on myocardial and coronary vascular function during reperfusion in a ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2009